Package: saeRobust 0.5.0
saeRobust: Robust Small Area Estimation
Methods to fit robust alternatives to commonly used models used in Small Area Estimation. The methods here used are based on best linear unbiased predictions and linear mixed models. At this time available models include area level models incorporating spatial and temporal correlation in the random effects.
Authors:
saeRobust_0.5.0.tar.gz
saeRobust_0.5.0.zip(r-4.5)saeRobust_0.5.0.zip(r-4.4)saeRobust_0.5.0.zip(r-4.3)
saeRobust_0.5.0.tgz(r-4.4-x86_64)saeRobust_0.5.0.tgz(r-4.4-arm64)saeRobust_0.5.0.tgz(r-4.3-x86_64)saeRobust_0.5.0.tgz(r-4.3-arm64)
saeRobust_0.5.0.tar.gz(r-4.5-noble)saeRobust_0.5.0.tar.gz(r-4.4-noble)
saeRobust_0.5.0.tgz(r-4.4-emscripten)saeRobust_0.5.0.tgz(r-4.3-emscripten)
saeRobust.pdf |saeRobust.html✨
saeRobust/json (API)
NEWS
# Install 'saeRobust' in R: |
install.packages('saeRobust', repos = c('https://wahani.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/wahani/saerobust/issues
Last updated 8 months agofrom:db45ed2702. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 10 2024 |
R-4.5-win-x86_64 | OK | Nov 10 2024 |
R-4.5-linux-x86_64 | OK | Nov 10 2024 |
R-4.4-win-x86_64 | OK | Nov 10 2024 |
R-4.4-mac-x86_64 | OK | Nov 10 2024 |
R-4.4-mac-aarch64 | OK | Nov 10 2024 |
R-4.3-win-x86_64 | OK | Nov 10 2024 |
R-4.3-mac-x86_64 | OK | Nov 10 2024 |
R-4.3-mac-aarch64 | OK | Nov 10 2024 |
Exports:addAverageDampaddConstraintMaxaddConstraintMinaddCounteraddHistoryaddMaxIteraddStorageblandAltmanPlotbootbootstrapconvCritAbsoluteconvCritRelativecorAR1corSAR1corSAR1AR1fitGenericModelfitrfhfitrsfhfitrstfhfitrtfhfixedPointgetKmakeXYmatAmatAConstmatBmatBConstmatTracematTZmatTZ1matUmatWmatWbcmsenewtonRaphsonnewtonRaphsonFunctionpsiOneqqPlotrfhscoretestMatXtestResponsetestResponse0testRookupdatevariance
Dependencies:aoosassertthatbootbrewcachemcallrclassclassIntclicolorspacecommonmarkcpp11DBIdeldirdesce1071evaluatefansifarverfastmapfsggplot2gluegtablehighrisobandKernSmoothknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmodulesmunsellnlmepbapplypillarpkgbuildpkgconfigpkgloadprocessxproxypspurrrR6RColorBrewerRcppRcppArmadillorlangroxygen2rprojroots2scalessfspspDataspdepstringistringrtibbleunitsutf8vctrsviridisLitewithrwkxfunxml2yaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Fit model on Bootstrap sample | boot boot,ANY,ANY,integerORnumeric-method boot,rfh,rfhVariance,NULL-method bootstrap |
Correlation Structure | corAR1 corAR1-class corSAR1 corSAR1-class corSAR1AR1 corSAR1AR1-class |
Fitting Precedures | fitGenericModel fitrfh fitrsfh fitrstfh fitrtfh rfh,numeric,matrixORMatrix,numeric,corAR1-method rfh,numeric,matrixORMatrix,numeric,corSAR1-method rfh,numeric,matrixORMatrix,numeric,corSAR1AR1-method rfh,numeric,matrixORMatrix,numeric,NULL-method |
Fixed Point Algorithm Infrastructure | addAverageDamp addConstraintMax addConstraintMin addCounter addHistory addMaxIter addStorage convCritAbsolute convCritRelative fixedPoint newtonRaphson newtonRaphsonFunction |
makeXY | makeXY |
Matrix constructor functions | matA matAConst matB matBConst matTrace matTZ matTZ1 matU matW matWbc |
Compute the Mean Squared Error of an Estimator | mse mse.fitrfh |
Plots | blandAltmanPlot plot.mse.fitrfh plot.prediction.fitrfh plot.rfh qqPlot |
psiOne | getK psiOne |
Robust Fay Herriot Model | predict.fitrfh rfh rfh,formula,data.frame,character,ANY-method |
Compute values of robust score functions | score |
Construction of test data | testMatX testResponse testResponse0 testRook |
Update a fitted object | update,fitrfh-method update,rfh-method |
Construct variance | variance variance.fitrfh variance.fitrsfh variance.fitrstfh variance.fitrtfh weights.fitrfh |