Package: saeRobust 0.5.0

saeRobust: Robust Small Area Estimation

Methods to fit robust alternatives to commonly used models used in Small Area Estimation. The methods here used are based on best linear unbiased predictions and linear mixed models. At this time available models include area level models incorporating spatial and temporal correlation in the random effects.

Authors:Sebastian Warnholz [aut, cre]

saeRobust_0.5.0.tar.gz
saeRobust_0.5.0.zip(r-4.5)saeRobust_0.5.0.zip(r-4.4)saeRobust_0.5.0.zip(r-4.3)
saeRobust_0.5.0.tgz(r-4.4-x86_64)saeRobust_0.5.0.tgz(r-4.4-arm64)saeRobust_0.5.0.tgz(r-4.3-x86_64)saeRobust_0.5.0.tgz(r-4.3-arm64)
saeRobust_0.5.0.tar.gz(r-4.5-noble)saeRobust_0.5.0.tar.gz(r-4.4-noble)
saeRobust_0.5.0.tgz(r-4.4-emscripten)saeRobust_0.5.0.tgz(r-4.3-emscripten)
saeRobust.pdf |saeRobust.html
saeRobust/json (API)
NEWS

# Install 'saeRobust' in R:
install.packages('saeRobust', repos = c('https://wahani.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/wahani/saerobust/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

4.03 score 1 stars 3 packages 12 scripts 471 downloads 46 exports 73 dependencies

Last updated 8 months agofrom:db45ed2702. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-win-x86_64OKNov 10 2024
R-4.5-linux-x86_64OKNov 10 2024
R-4.4-win-x86_64OKNov 10 2024
R-4.4-mac-x86_64OKNov 10 2024
R-4.4-mac-aarch64OKNov 10 2024
R-4.3-win-x86_64OKNov 10 2024
R-4.3-mac-x86_64OKNov 10 2024
R-4.3-mac-aarch64OKNov 10 2024

Exports:addAverageDampaddConstraintMaxaddConstraintMinaddCounteraddHistoryaddMaxIteraddStorageblandAltmanPlotbootbootstrapconvCritAbsoluteconvCritRelativecorAR1corSAR1corSAR1AR1fitGenericModelfitrfhfitrsfhfitrstfhfitrtfhfixedPointgetKmakeXYmatAmatAConstmatBmatBConstmatTracematTZmatTZ1matUmatWmatWbcmsenewtonRaphsonnewtonRaphsonFunctionpsiOneqqPlotrfhscoretestMatXtestResponsetestResponse0testRookupdatevariance

Dependencies:aoosassertthatbootbrewcachemcallrclassclassIntclicolorspacecommonmarkcpp11DBIdeldirdesce1071evaluatefansifarverfastmapfsggplot2gluegtablehighrisobandKernSmoothknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmodulesmunsellnlmepbapplypillarpkgbuildpkgconfigpkgloadprocessxproxypspurrrR6RColorBrewerRcppRcppArmadillorlangroxygen2rprojroots2scalessfspspDataspdepstringistringrtibbleunitsutf8vctrsviridisLitewithrwkxfunxml2yaml

Notes on the fixed point framework

Rendered fromfixedPoint.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2016-03-04
Started: 2015-04-10

Readme and manuals

Help Manual

Help pageTopics
Fit model on Bootstrap sampleboot boot,ANY,ANY,integerORnumeric-method boot,rfh,rfhVariance,NULL-method bootstrap
Correlation StructurecorAR1 corAR1-class corSAR1 corSAR1-class corSAR1AR1 corSAR1AR1-class
Fitting PreceduresfitGenericModel fitrfh fitrsfh fitrstfh fitrtfh rfh,numeric,matrixORMatrix,numeric,corAR1-method rfh,numeric,matrixORMatrix,numeric,corSAR1-method rfh,numeric,matrixORMatrix,numeric,corSAR1AR1-method rfh,numeric,matrixORMatrix,numeric,NULL-method
Fixed Point Algorithm InfrastructureaddAverageDamp addConstraintMax addConstraintMin addCounter addHistory addMaxIter addStorage convCritAbsolute convCritRelative fixedPoint newtonRaphson newtonRaphsonFunction
makeXYmakeXY
Matrix constructor functionsmatA matAConst matB matBConst matTrace matTZ matTZ1 matU matW matWbc
Compute the Mean Squared Error of an Estimatormse mse.fitrfh
PlotsblandAltmanPlot plot.mse.fitrfh plot.prediction.fitrfh plot.rfh qqPlot
psiOnegetK psiOne
Robust Fay Herriot Modelpredict.fitrfh rfh rfh,formula,data.frame,character,ANY-method
Compute values of robust score functionsscore
Construction of test datatestMatX testResponse testResponse0 testRook
Update a fitted objectupdate,fitrfh-method update,rfh-method
Construct variancevariance variance.fitrfh variance.fitrsfh variance.fitrstfh variance.fitrtfh weights.fitrfh