Tools for the simulation of data in the context of small area estimation. Combine all steps of your simulation - from data generation over drawing samples to model fitting - in one object. This enables easy modification and combination of different scenarios. You can store your results in a folder or start the simulation in parallel.
Two external resources may be of interest in addition to this vignette:
Consider a linear mixed model. It contains two components. A fixed effects part, and an error component. The error component can be split into a random effects part and a model error.
library(saeSim)
setup <- sim_base() %>%
sim_gen_x() %>%
sim_gen_e() %>%
sim_gen_v() %>%
sim_resp_eq(y = 100 + 2 * x + v + e) %>%
sim_simName("Doku")
## Warning: `arrange_()` was deprecated in dplyr 0.7.0.
## ℹ Please use `arrange()` instead.
## ℹ See vignette('programming') for more help
## ℹ The deprecated feature was likely used in the saeSim package.
## Please report the issue at <https://github.com/wahani/saeSim/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: `group_by_()` was deprecated in dplyr 0.7.0.
## ℹ Please use `group_by()` instead.
## ℹ See vignette('programming') for more help
## ℹ The deprecated feature was likely used in the saeSim package.
## Please report the issue at <https://github.com/wahani/saeSim/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## # A data frame: 10,000 × 6
## idD idU x e v y
## * <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 -2.51 -3.22 0.235 92.0
## 2 1 2 0.735 -4.23 0.235 97.5
## 3 1 3 -3.34 -4.14 0.235 89.4
## 4 1 4 6.38 -4.74 0.235 108.
## 5 1 5 1.32 -2.00 0.235 101.
## 6 1 6 -3.28 -2.10 0.235 91.6
## # ℹ 9,994 more rows
sim_base()
is responsible to supply a
data.frame
to which variables can be added. The default is
to create a data.frame
with indicator variables
idD
and idU
(2-level-model), which uniquely
identify observations. ‘D’ stands for the domain, i.e. the grouping
variable. ‘U’ stands for unit and is the identifier of single
observations within domains. sim_resp
will add a variable
y
as response.
The setup itself does not contain the simulated data but the
functions to process the data. To start a simulation use the function
sim
. It will return a list
containing
data.frames
as elements:
You can coerce a simulation setup to a data.frame
with
as.data.frame
.
Components in a simulation setup should be added using the pipe
operator %>%
from magrittr. A component defines ‘when’ a
specific function will be applied in a chain of functions. To add a
component you can use one of: sim_gen
,
sim_resp
, sim_comp_pop
,
sim_sample
, sim_comp_sample
,
sim_agg
and sim_comp_agg
. They all expect a
simulation setup as first argument and a function as second and will
take care of the order in which the functions are called. The reason for
this is the following:
setup <- sim_base() %>%
sim_gen_x() %>%
sim_gen_e() %>%
sim_resp_eq(y = 100 + 2 * x + e)
setup1 <- setup %>% sim_sample(sample_fraction(0.05))
setup2 <- setup %>% sim_sample(sample_number(5))
You can define a rudimentary scenario and only have to explain how
scenarios differ. You do not have to redefine them. setup1
and setup2
only differ in the way samples are drawn.
sim_sample
will take care, that the sampling will take
place at the appropriate place in the chain of functions no matter how
setup
was composed.
If you can’t remember all function names, use auto-complete. All
functions to add components start with sim_
. And all
functions meant to be used in a given phase will start with the
corresponding prefix, i.e. if you set the sampling scheme you use
sim_sample
– all functions to control sampling have the
prefix sample
.
You will want to check your results regularly when working with
sim_setup
objects. Some methods are supplied to do
that:
show
- this is the print
method for
S4-Classes. You don’t have to call show
explicitly. You may
have noticed that only a few lines of data are printed to the console if
you evaluate a simulation setup. show
will print the
head
of the resulting data of one simulation run.plot
- for visualizing the dataautoplot
- Will imitate smoothScatter
with
ggplot2saeSim has an interface to standard random number generators in R. If things get more complex you can always define new generator functions.
## # A data frame: 6 × 3
## idD idU x
## <int> <int> <dbl>
## 1 1 1 -3.48
## 2 1 2 -3.48
## 3 1 3 -3.48
## 4 2 1 13.2
## 5 2 2 13.2
## 6 2 3 13.2
You can supply any random number generator to
gen_generic
and since we are in small area estimation you
have an optional group variable to generate ‘area-level’ variables. Some
short cuts for data generation are sim_gen_x
,
sim_gen_v
and sim_gen_e
which add normally
distributed variables named ‘x’, ‘e’ and ‘v’ respectively. Also there
are some function with the prefix ‘gen’ which will be extended in the
future.
library(saeSim)
setup <- sim_base() %>%
sim_gen_x() %>% # Variable 'x'
sim_gen_e() %>% # Variable 'e'
sim_gen_v() %>% # Variable 'v' as a random-effect
sim_gen(gen_v_sar(name = "vSp")) %>% # random-effect following a SAR(1)
sim_resp_eq(y = 100 + x + v + vSp + e) # Computing 'y'
setup
## # A data frame: 10,000 × 7
## idD idU x e v vSp y
## * <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 -3.26 -5.80 -1.29 0.480 90.1
## 2 1 2 4.26 4.77 -1.29 0.480 108.
## 3 1 3 -3.07 1.02 -1.29 0.480 97.1
## 4 1 4 5.21 2.32 -1.29 0.480 107.
## 5 1 5 1.91 8.53 -1.29 0.480 110.
## 6 1 6 -2.66 3.76 -1.29 0.480 100.
## # ℹ 9,994 more rows
For contaminated data you can use the same generator functions,
however, instead of using sim_gen
you use
sim_gen_cont
which will have some extra arguments to
control the contamination. To extend the above setup with a contaminated
spatially correlated error component you can add the following:
contSetup <- setup %>%
sim_gen_cont(
gen_v_sar(sd = 40, name = "vSp"), # defining the model
nCont = 0.05, # 5 per cent outliers
type = "area", # whole areas are outliers, i.e. all obs within
areaVar = "idD", # var name to identify domain
fixed = TRUE # if in each iteration the same area is an outlier
)
Note that the generator is the same but with a higher standard
deviation. The argument nCont
controls how much
observations are contaminated. Values < 1 are interpreted as
probability. A single number as the number of contaminated units (can be
areas or observations in each area or observations). When given with
length(nCont) > 1
it will be interpreted as number of
contaminated observations in each area. Use the following example to see
how these things play together:
base_id(3, 4) %>%
sim_gen_x() %>%
sim_gen_e() %>%
sim_gen_ec(mean = 0, sd = 150, name = "eCont", nCont = c(1, 2, 3)) %>%
as.data.frame
## idD idU x e eCont idC
## 1 1 1 2.1238928 2.85552209 0.00000 FALSE
## 2 1 2 1.8224797 -3.70320125 0.00000 FALSE
## 3 1 3 -0.7466757 -4.63509843 0.00000 FALSE
## 4 1 4 0.2864107 -0.51238608 174.16195 TRUE
## 5 2 1 -4.1711873 -1.64389880 0.00000 FALSE
## 6 2 2 -0.9948926 2.68706944 0.00000 FALSE
## 7 2 3 -4.4030395 0.08884468 131.30190 TRUE
## 8 2 4 1.4103819 0.77040266 -111.81580 TRUE
## 9 3 1 -0.3921937 0.88877112 0.00000 FALSE
## 10 3 2 -5.7884702 -1.54674283 47.70671 TRUE
## 11 3 3 -4.8635870 1.35621664 -306.40766 TRUE
## 12 3 4 -5.7893455 4.26584633 305.57991 TRUE
Here follow some examples how to add components for computation to a
sim_setup
. Three points can be accessed with
sim_comp_pop
- add a computation before samplingsim_comp_sample
- add a computation after samplingsim_comp_agg
- add a computation after aggregationbase_id(2, 3) %>%
sim_gen_x() %>%
sim_gen_e() %>%
sim_gen_ec() %>%
sim_resp_eq(y = 100 + x + e) %>%
# the mean in each domain:
sim_comp_pop(comp_var(popMean = mean(y)), by = "idD")
## # A data frame: 6 × 7
## idD idU x e idC y popMean
## * <int> <int> <dbl> <dbl> <lgl> <dbl> <dbl>
## 1 1 1 0.575 6.62 FALSE 107. 108.
## 2 1 2 3.77 0.226 FALSE 104. 108.
## 3 1 3 12.6 1.07 FALSE 114. 108.
## 4 2 1 6.64 5.01 FALSE 112. 106.
## 5 2 2 -0.842 3.41 FALSE 103. 106.
## 6 2 3 4.50 0.359 FALSE 105. 106.
The function comp_var
is a wrapper around
dplyr::mutate
so you can add simple data manipulations. The
argument by
is a little extension and lets you define
operations in the scope of groups identified by a variable in the data.
In this case the mean of the variable ‘y’ is computed for every group
identified with the variable ‘idD’. This is done before sampling, hence
the prefix ‘pop’ for population.
By adding computation functions you can extend the functionality to wrap your whole simulation. This will separate the utility of this package from only generating data.
comp_linearPredictor <- function(dat) {
dat$linearPredictor <- lm(y ~ x, dat) %>% predict
dat
}
sim_base_lm() %>%
sim_comp_pop(comp_linearPredictor)
## Warning: `mutate_()` was deprecated in dplyr 0.7.0.
## ℹ Please use `mutate()` instead.
## ℹ See vignette('programming') for more help
## ℹ The deprecated feature was likely used in the saeSim package.
## Please report the issue at <https://github.com/wahani/saeSim/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## # A data frame: 10,000 × 6
## idD idU x e y linearPredictor
## <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 -8.50 -0.637 90.9 91.6
## 2 1 2 -0.732 3.09 102. 99.3
## 3 1 3 1.11 6.99 108. 101.
## 4 1 4 3.82 4.38 108. 104.
## 5 1 5 0.615 -0.191 100. 101.
## 6 1 6 0.382 -3.60 96.8 100.
## # ℹ 9,994 more rows
Or, should this be desirable, directly produce a list of
lm
objects or add them as attribute to the data. The
intended way of writing functions is that they will return the modified
data of class ‘data.frame’.
## [[1]]
##
## Call:
## lm(formula = y ~ x, data = dat)
##
## Coefficients:
## (Intercept) x
## 100.0421 0.9872
comp_linearModelAsAttr <- function(dat) {
attr(dat, "linearModel") <- lm(y ~ x, dat)
dat
}
dat <- sim_base_lm() %>%
sim_comp_pop(comp_linearModelAsAttr) %>%
as.data.frame
attr(dat, "linearModel")
##
## Call:
## lm(formula = y ~ x, data = dat)
##
## Coefficients:
## (Intercept) x
## 100.017 1.032
If you use any kind of sampling, the ‘linearPredictor’ can be added after sampling. This is where small area models are supposed to be applied.
## # A data frame: 500 × 6
## idD idU x e y linearPredictor
## * <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 -2.35 -2.08 95.6 98.0
## 2 1 94 -6.89 -2.40 90.7 93.2
## 3 1 68 5.03 -3.87 101. 106.
## 4 1 19 3.10 4.42 108. 104.
## 5 1 27 -0.462 8.40 108. 100.
## 6 2 95 5.02 1.59 107. 106.
## # ℹ 494 more rows
Should you want to apply area level models, use
sim_comp_agg
instead.
## # A data frame: 100 × 5
## idD x e y linearPredictor
## * <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 -2.92 1.71 98.8 96.8
## 2 2 -0.211 -0.119 99.7 99.5
## 3 3 2.69 -1.60 101. 102.
## 4 4 0.825 -4.47 96.4 101.
## 5 5 1.40 0.510 102. 101.
## 6 6 1.14 2.29 103. 101.
## # ℹ 94 more rows
After the data generation you may want to draw a sample from the
population. Use the function sim_sample()
to add a sampling
component to your sim_setup
.
sample_number
- wrapper around
dplyr::sample_n
sample_fraction
- wrapper around
dplyr::sample_frac
## # A data frame: 1 × 3
## idD idU x
## <int> <int> <dbl>
## 1 2 3 -2.12
## # A data frame: 3 × 3
## idD idU x
## * <int> <int> <dbl>
## 1 1 3 -5.35
## 2 2 1 -9.71
## 3 3 2 1.48
## # A data frame: 10 × 5
## idD idU x e y
## <int> <int> <dbl> <dbl> <dbl>
## 1 79 72 2.37 2.01 104.
## 2 22 15 3.00 3.03 106.
## 3 64 64 -0.265 -9.36 90.4
## 4 57 31 6.09 -3.18 103.
## 5 53 27 -1.84 2.84 101.
## 6 45 26 0.549 -9.37 91.2
## # ℹ 4 more rows
## # A data frame: 500 × 5
## idD idU x e y
## <int> <int> <dbl> <dbl> <dbl>
## 1 80 7 -3.73 7.14 103.
## 2 100 74 9.64 1.85 111.
## 3 95 49 -1.77 -6.65 91.6
## 4 62 95 5.93 1.97 108.
## 5 76 80 -0.901 3.79 103.
## 6 3 75 4.65 -3.96 101.
## # ℹ 494 more rows
# srs in each domain/cluster
sim_base_lm() %>% sim_sample(sample_number(size = 10L, groupVars = "idD"))
## # A data frame: 1,000 × 5
## idD idU x e y
## * <int> <int> <dbl> <dbl> <dbl>
## 1 1 13 -1.09 3.43 102.
## 2 1 23 -5.01 -12.5 82.4
## 3 1 26 -0.670 1.25 101.
## 4 1 68 5.73 5.13 111.
## 5 1 47 0.721 6.89 108.
## 6 1 15 -3.46 3.54 100.
## # ℹ 994 more rows
## # A data frame: 500 × 5
## idD idU x e y
## * <int> <int> <dbl> <dbl> <dbl>
## 1 1 18 2.43 -2.50 99.9
## 2 1 25 -0.341 -1.20 98.5
## 3 1 51 3.60 3.33 107.
## 4 1 33 -1.02 3.62 103.
## 5 1 16 -0.573 -8.28 91.1
## 6 2 49 6.05 1.11 107.
## # ℹ 494 more rows